CONSTRAINTS IN GENETIC PROGRAMMING

Prepared By:

Academic Rank:

University & Department:

NASA/JSC
Directorate:
Division:
Branch:

JSC Colleague:
Date Submitted:

Contract Number:

Final Report
NASA/ASEE Summer Faculty Fellowship Program — 1995
Johnson Space Center

11-1

Cezary Z. Janikow, Ph.D.

Assistant Professor

University of Missouri — St. Louis
Department of Mathematics and

Computer Science
St. Louis, MO 63121

Engineering

Automation, Robotics and Simulation

Intelligent Systems
Dennis Lawler
July 20, 1995

NGT-44-001-800

ABSTRACT

Genetic programming refers to a class of genetic algorithms utilizing generic represen-
tation in the form of program trees. For a particular application, one needs to provide
the set of functions, whose compositions determine the space of program structures being
evolved, and the set of terminals, which determine the space of specific instances of those
programs. The algorithm searches the space for the best program for a given problem,
applying evolutionary mechanisms borrowed from nature.

Genetic algorithms have shown great capabilities in approximately solving optimization
problems which could not be approximated or solved with other methods. Genetic pro-
gramming extends their capabilities to deal with a broader variety of problems. However,
it also extends the size of the search space, which often becomes too large to be effectively
searched even by evolutionary methods. Therefore, our objective is to utilize problem con-
straints, if such can be identified, to restrict this space. In this publication, we propose
a generic constraint specification language, powerful enough for a broad class of problem
constraints. This language has two elements - one reduces only the number of program
instances, the other reduces both the space of program structures as well as their instances.
With this language, we define the minimal set of complete constraints, and a set of opera-
tors guaranteeing offspring validity from valid parents. We also show that these operators
are not less efficient than the standard genetic programming operators if one preprocesses
the constraints — the necessary mechanisms are identified.

11-2

INTRODUCTION

Evolutionary problem solving simulates nature to search for a solution. First, represen-
tation for potential solutions must be defined, along with an evaluation function to quantify
different solutions. A number of solutions are simultaneously processed in a simulated pop-
ulation. Individual solutions undergo simulated evolution: Darwinian selective pressure is
used for survival determination, mutation is used to alter individual solutions, and crossover
is used for information inheritance from usually two parents to one or two offspring.

Genetic programming (GP) [5, 6] is one of the most recent evolutionary methods. It
differs from others, such as the well-known genetic algorithms (GAs) [2, 3], by its repre-
sentation — an individual solution is a high level program, structured as a tree representing
the dynamic program structure. This allows, for example, for the learning of analytical
functional descriptions [5] — which can not be accomplished with GAs.

A GP application requires specification of the primitive function set and the terminals,
which can be used in any combination (the closure property) [5]. However, by providing
the primitive functions (along with procedural interpretations), one explicitly determines
the set of plausible expressions that can be evolved. For example, suppose we need to learn
the (unknown) function y = sin () - cos (z + 2). If we don’t know the function, we do not
know that the solution will involve trigonometric functions. Therefore, we may decide to
use the following function set {+, —, *,/}. This will prevent the exact solution from being
discovered (the suffictency principle states that one assumes that the function set includes
all needed functions). The evolved solution would have to be fairly complex for a satis-
factory approximation (if possible at all, especially given size constraints imposed on GP
programs). On the other hand, if we allow many functions to participate in the primitive
set, we explode the search space beyond manageability. Therefore, the GP approach is very
sensitive to the user’s insights (in addition to being very sensitive to its own parameters).
This will hopefully change when methods are developed to constrain the space, to incorpo-
rate heuristics, to automatically select/prune the set of primitives, to automatically update
the sensitive parameters, etc.

An important issue for any problem solving method is that of handling constraints,
which are often present. If disregarded, they may lead to infeasible solutions. On the other
hand, when properly handled they can reduce the amount of searching required. Constraints
can be handled by evolutionary algorithms, especially by genetic algorithms, where most
constraint-related research has been done. However, a common problem is that of generality
of any approach. Many GA approaches create specialized representations and/or operators,
which prohibit invalid solutions from occurring. Examples are a matrix representation for
the transportation problem and a permutation sequence for the traveling salesman problem.
Even though these approaches are very nicely crafted and are efficient, they are also hand-
tailored for the specific problems and must be redone for a new problem, a class of problems,
or a specific instance of a problem with different constraints. To avoid that, one needs to
provide a more general approach. One such approach has been studied in GAs — penalize
solutions which violate the constraints [8]. But this method is not perfect either. Even
though it is generic and only requires modification of the evaluation function, it is much
less efficient as it still allows explorations of infeasible problem subspaces, wasting resources
there. In addition, too relaxed a penalty can still allow generation of infeasible solutions.

11 -3

Too rigid a penalty may prohibit good solutions from being discovered [7).

The most desirable approach is to provide a constraint-specification language, and then
provide built-in mechanisms to handle those constraints, preferably by moving the search
into feasible subspaces only. The language should be powerful enough to express a broad
range of specific constraints that a particular problem may have. This has been done with
GAs for the class of linear constraints over a parameter space [7].

GP offers much greater capabilities than GAs by its variable length parameterized rep-
resentation. However, as mentioned, it must advance in many directions to enjoy more
practical applications. And constraints are an important aspect of such advancement. In
this paper, we propose a constraint handling methodology, which is based on the idea of a
constraint specification language. This language is presented and enforcement mechanisms
are provided. The language is not capable of expressing "any” constraint. However, it is
applicable to a broad range of problem constraints. Moreover, we show that the enforce-
ment mechanisms do not reduce the efficiency of the GP algorithm. In fact, the actual
search efficiency is greatly improved since the search is now conducted only in the feasible
subspace.

The idea is based on restricting both the space of program structures, and on reducing
the number of program instances for any particular program structure. In this paper, we
overview the various methods for processing constraints in genetic algorithms. Then, we
propose a constraint specification language for GP, which is easy to use. Afterwards, we
present transformations aimed at reducing the set of constraint specifications to a minimal
yet sufficient set, which is easy to enforce. Subsequently, we define mutation and crossover
to be "closed” in the program subspace specified by the specifications. That is, given valid
parents these operators generate only valid offspring. We also provide a method to initialize
the population of programs with only valid instances to ensure that the evolution will be
closed in the feasible subspace. Finally, we show that one may implement these operators
with the same level of efficiency as the standard operators in unconstrained GP.

CONSTRAINTS IN GP AND GAs

Genetic programming is a special case (or a generalization, depending on the exact def-
inition) of genetic algorithms. Given a problem, a set of constants for the problem (e.g.,
program variables or actions) is specified, and a set of primitive functions is defined. Even-
tual program data can be included in the terminal set, or it can be hidden in interpretations
of functions. Compositions of functions determine the space of programs which can be ex-
pressed this way. What is sought is one of such programs, the one which solves the problem
the best way (given some criteria).

Discovery, or rather creation, of the best program is accomplished by evolution. A
population of initial programs (possibly random) is set, which then evolve by simulating
nature. In this simulation, current programs are evaluated (given problem criteria) and an
evaluation-based pressure is used to promote survival of better programs. Programs also
undergo mutation, and create offspring by means of crossover.

An obvious problem that GP tries to address is that of searching the infinite space of
possible programs. This is done by limiting this space as explained below. Our objective is
to further limit this space by additional constraints.

11-4

Current State of the Art in Constraint Processing in GP

Except for ADF's (automatic function definitions) and a few tailored applications, there
is very little reported work on constraints and methods for handling them in GP [4, 5, 6].

In ADFs, constraints relate to differentiating among different functions and the program
being evolved. This has few implications for our objectives. The tailored applications are
not more helpful, since they aim at satisfying constraints of very specific functions (usually
a single constraint).

In general, the only other constraint used in GP relate to managing the complexity
of the evolution. This is done by imposing restrictions on program size. Program size is
defined in one of two ways: either by the depth of the tree (proportional to maximum
number of nested function calls) or by the total size of the tree (proportional to the total
number of function calls). Either case is always handled in one of two different ways:

e abandon the violating program, and keep creating new ones until one that satisfies
the constraint is generated (method 1 below),

e use the parent program instead of the violating offspring (method 2 below).

These methods are fine if violations are rare. With the size constraint, this is indeed
the case. However, with new constraints, this is unlikely to be true and new methods will
have to be investigated.

Various Methods for Handling Constraints

In any evolutionary method (such as GP, but especially in GA), constraints have been,
or at least can be, handled in a number of ways. Difficulties come in implementing some of
the ways, and in prior determination of which way might be the best for a given problem
(or a class of problems). Unfortunately, there is no "silver bullet”.

Genetic algorithms enjoy richer methodologies to deal with problem constraints. In
addition to those two methods listed for dealing with size constraints in GP, GA researchers
have used approaches such as modifications of the interpretation of a particular solution
(called phenotype), repair algorithms, and penalty functions to penalize invalid solutions.
A recently emerging approach is to provide "smart” operators, called closed, which are
intended to produce only valid offspring from valid parents. Such operators have been
proposed for GA parameter optimization with linear constraints [7].

Objectives and Methods

Because possible constraints are endless, it is impossible to provide constraint handling
methods for specific constraints ahead of time. On the other hand, we want to avoid
having to provide such methods separately for each problem, whenever a constraint appears.
Therefore, our objective is to design a constraint specification language able to express
constraints encountered in a broad range of applications. Then, we could have generic
mechanisms processing those constraints so that

e only valid programs are evolved,

e the space of valid programs is constrained to reduce the effective search space.

11-5

EXPLORATION OF CONSTRAINT SPECIFICATIONS

Search Space in GP

. GP’s problem space is defined by terminals T' and functions F, where each f; € F has
a fixed arity a;. Function compositions determine the space of possible program structures.
Because the space is infinite, it is normally restricted by the aforementioned two methods
— restrict the number of nodes or restrict the maximal depth of a program. Terminals
are values which can appear in terminal nodes. They have no implications for program
structures. Instead, given a specific program structure, which serves as a template, terminals
determine the space of possible program iristances. This space, for a particular program
structure, can again be infinite if infinite sets are allowed (such as real numbers). Therefore,
the space of all programs is determined by both F and T', and this space can be infinite in
two dimensions. One of these possibly infinite dimensions , the space of program structures,
is normally restricted by the size constraints. The other dimension, program instances of
a program structure, is restricted by the finite accuracy of computer representations. It is
assumed that this space contains the sought program. This assumption is the basis for GP
problem solving — the sufficiency assumption.

T- and F- Constraint Specifications

We use two different kinds of constraint specifications, but, as we will see, they are not
completely independent. These are syntactic T-specifications and semantic F-specifications.
Moreover, we will show that not all of them are really needed - after certain transformations,
only a few are sufficient to express exactly the same constraints. However, it will generally
be much easier to express problem constraints with the full specification language, while it
will be much easier to devise mechanisms for the minimal set.

T-specifications are based on domains for function arguments and on function ranges.

Definition 1 Let us define = to stand for domain compatibility. That is, X = Y means
that X can replace Y, where both X andY stand for sets of values (finite or infinite) allowed
for domains or returned as function ranges.

Definition 2 Define the following T-specifications (syntactic constraints):

1. TB°t _ the set of values allowed at the Root, or the set of values allowed to be returned
by the evolved program, that is by functions appearing at the Root. TR°* gctually
specifies both a domain (for the root node) and a range (for the program).

2. T, - T; is the range of f;, that is the set of values returned by the function f;.

3. Ty - Tg is the domain for the j** argument of f;, that is the set of values allowed
there (which may be returned by functions used as this argument).

{ T, > T. - compatibilities between ranges and domains

5 T. = TReot _ compatibilities between function ranges and the program range

’

where ’?’ indicates that the compatibility can be straight or it can be negated.

11-6

T-specificationsreduce both the space of program structures and the space of instances of
those structures. Therefore, they are very powerful constraints. GP uses only one terminal
set - any value from that set may appear in any leaf of a program tree. Obviously, this is not
true in actual programs — different functions take different arguments. T'-specifications allow
expressing such differences, thus allowing reduction in the space of program instances per
program structure. Moreover, some T-specifications also implicitly restrict what function
can call other functions, effectively reducing the space of possible program structures. For
example, if the domain for a function argument is fixed, then the value for that argument
may not be obtained from a function with an incompatible range. Therefore, some T-
specifications can be seen analogous to function prototypes available in high level languages.

However, syntactic fit does not necessarily mean that a function should call another
function. One needs additional specifications based on program semantics. These are
provided by means of F-specifications, which further restrict the space of program structures
(but not program instances).

Definition 8 Define the following F-specifications (semantic constraints):
6. FRoot _ the set of functions disallowed at the Root.

7. F, — F. is the set of functions disallowed as direct callers to f; (generally, a function
is unaware of the caller; however, GP constructs a program tree, which represents the
dynamic structure of the program).

8. F; - F,-j is the set of functions disallowed as arg; to f.

Example 1 Assume a function (if arg, args args), interpreted as: if arg, evaluates to
true, return the evaluation of args, else return the evaluation of args (assume both of
which evaluate to real numbers). One needs to specify that arg; could only be terminals
which are boolean values, or only functions which return boolean values. Assuming that
T = R*U{T, F}, one may specify T}; = {T, F}. Because R! is not compatible with {T, F},

only elements of the latter can be placed there.

Proposition 1 X =Y & XCY.

:: X = Y means that in places where values from Y are valid one may place any value from
X, or any function returning a value from X. To guarantee that no out-of-domain values
are used for the original Y, X may not contain values not found in Y. Therefore, it must
be a subset of Y, or it must equal Y.

Using known properties of C, domain compatibilities could be automatically computed
(giving compatibility T-specifications #4 & #5), as long as these are restricted to syntactic
constraints. .

Example 2 Assume two sets: Ty = {1,2,3} representing masses of physical objects in
kilograms, and T; = {1,2} representing times in seconds. Thus one may conclude that
T, = Ty since {1,2} C {1,2,3}. But by observing the interpretations of these objects, an
obvious conclusion is that T # T, but this is based on interpretation of these sets, which
is left to F'-specifications.

11-7

Rules on T- and F-specifications

Given the above T-specifications and F'-specifications, which can be used to express
problem constraints, an obvious issue is that of possible redundancies, or that of existence
of sufficiently minimal specifications. We answer these questions in this section. Surpris-
ingly, after certain static transformations, only a subset of T~ and F-specifications will turn
out to be sufficient to express all T- and F-specification constraints. This observation is ex-
tremely important, as it will allow efficient constraint enforcement mechanisms after initial
preprocessing. The sufficient minimal set is thus important for efficient constraint process-
ing, but not for constraint specifications - specifications are more easily expressed with the
original T-specifications and F-specifications. This is why we need both, along with the
necessary transformations.

The first step is is to extend F-specifications.

Definition 4 Define ‘complete’ T-specifications as those that list all elements of Definition
2, including ranges and domains for all functions and their arguments and compatibilities
between all pairs range-domain and range-program range.

Proposition 2 The following F-specification constraints are implied by complete T-specifications:
V5uer(Te # T! > fi € FY)
Viver(Tk # TR = fi € FRoct

2 If fi returns a range which is not compatible with the domain for a specific function
argument, then fi cannot be used to provide values for the argument. The same applies to
values returned from the program.

Proposition 2 is very important because the compatibility T-specifications (#4 & #5)
can be automatically generated from other T-specifications, and according to the rule, they
can be automatically translated to F-specifications. The latter, as we will see, are easier to
handle. .

Note that the opposite of these implications is not true since some F-specifications are
based solely on interpretations. In other words, it is not true that fi € F] — Ti # T7.
Note that the following is not true either: Vyep(Th = T? — fi ¢ F]) (see Example 2).
Fortunately, the first implication is sufficient for us as it tells us that properly extended F?
and FR2% gpecifications subsume the T, # T¢ and T, # TR°* T_specifications.

Example 3 Suppose f = {f1, f2}, a1 = 1,a3 = 1. Also suppose fi1 returns real-valued
numbers (T} = R!), and f, takes boolean arguments (T7 = {F,T}). Because T} # T, we
may conclude that f, cannot be placed as the argument to f;: h € F}.

Definition 5 If F-specifications ezplicitly satisfy Proposition 2 then call them T-eztensive’
F-specifications. If F-specifications do not ezplicitly satisfy Proposition 2 for any function
fx € F, then call them 'T-intensive’ F-specifications.

In other words, T-intensive F-specifications list only some additional constraints — which
cannot be derived from T-specifications. T-eztensive F-specifications, on the other hand,
are those semantics-based constraints extended by syntactic constraints on function calls.

For now, we will look at redundancies among F-specifications.

11-8

Proposition 8 Suppose fi € F and F-specifications are T-eztensive. Then

Vier(fi € F © Vienafi € Ff)

:: If a function f; cannot call fi, then fi will never be called by f;. Also, if fi is never
called from f;, it must not be called from any of f;’s arguments.

With Proposition 3 one may wonder whether we need both F} and F, constraints —
they seem equivalent. The next rule says they are not.

Proposition 4 Suppose fi € F and F-specifications are T-extensive. Then

Ve (Gienagfe € F! 4 fi € Fi)

The implication is true only when Proposition 3 applies.
:: If fi cannot be called from f; by its j*# argument, it may possibly be allowed as another
argument (unless, according to Proposition 3, it cannot be called from any of the arguments).

Even though they are not equivalent, both are not needed either. It turns out that F}
F-specifications are stronger.

Definition 68 If F-specifications ezplicitly satisfy Proposition 3, call them 'F-eztensive’ F-
specifications. If F-specifications do not include any F, constraints, call them ’F-intensive’
F-specifications.

Proposition 5 F-intensive F-specifications are sufficient to ezpress all possible F'-specifications.
:: According to Proposition 3, fi € F; can be deduced when f; is ezxcluded from all argu-
ments of fi. According to Proposition {, it can happen only when Proposition 3 applies.
Therefore, F-intenstve F-specifications provide sufficient information to produce F-eztensive
F-specifications.

We now return to the question of T-specifications vs. F-specifications. We have seen that
T-intensive F-specifications provide restrictions on function calls based on interpretations,
and that they can be extended to T-eztensive F-specifications, which also take syntax
into account. One question that comes to mind is: do we still need T-specifications after
they have been used to produce T-eztensive F-specifications? In other words, is there any
constraint in T-spectfications which is not expressed with T-eztensive F-specifications? The
answer is 'no’ for certain T-specifications.

Proposition 8 T-eztensive F-specifications are sufficient to ezpress constraints imposed
by compatibility (#4 & #5) and T, (#2) T-specifications.

:: Let us look at compatibilities of the form T} > T;’ Proposition 2 says that the negated
forms (#) are all expressed in T-eztensive F-specifications. However, the straight form
(=) can be superseded by F-specifications, which provide additional constraints based on
interpretations. Thus, if f, € F!, then the corresponding T-specification is irrelevant. On
the other hand, if fi & F.-j (in the T-intensive form), then we have two cases:

11-9

o if T A T,-j , then according to Proposition 2 we put fi into F!: fi € Ff in T-eztensive
forms

o if T = T’-j, then we have no reason to extend F-specifications- thus, fi & F..j

The same can be argued for T} = TRoot fg 40 T, T-specifications , they are sets of values
returned by functions. Therefore, they place restrictions on function calls. But, F-eztensive
F'-specifications ezpress all possible restrictions on function calls. Said differently, T, is
only used for other specifications.

Definition 7 Define T-eztensive F-intensive F-specifications as the 'normal’ form.

Theorem 1 (Fundamentals of T'- and F-specification constraints) Even if the user provides
only T-F-intensive F-specifications, T-F-eztensive F-specifications can be computed, and
along with domains and the program range they are sufficient to ezpress all T- and F-
specification constraints. Moreover, just the normal F-specifications along with domains
and the program range are sufficient as well.

:: It follows from Propositions 5 and. 6.

Based on Theorem 1, we may now restrict our discussion to F-specifications only, as-
suming that these are in the normal form. To make sure they are, a simple preprocessing
mechanism suffices. :

EXPLORATION OF CONSTRAINT HANDLING METHODS

We propose to implement the specified constraints into "smart” operators. To do so,
we must define operators "closed” in the valid program structure — from valid parents
always generate valid offspring. This will also require an initialization procedure with valid

programs.

Definition 8 In the program tree, we call ’function nodes’ all nodes which correspond to a
function. In this case, we say that the function labels the node. All other nodes are called
’terminal nodes’.

Definition 9 Define Ty to be the set of values which can replace node N. That is, Ty is
the set of values that the node can assume without invalidating, w/respect to T-specifications
and F-specifications , the program tree containing that node.

Definition 10 Define Fy to be the set of functions which can replace node N. That ts,
FN is the set of functions which can label that node without invalidating, w/respect to T-
specifications and F-specifications , the program tree containing that node.

For terminal nodes, we cannot determine what other possible values can it contain by
Just looking at the node. We must look at the parent of the node (unless it is the Root).
For function nodes, we could either use the set of values returned by the function labeling
that node (T for f;). However, after replacing the function node with a terminal node, we

11-10

would anyway have to look at the context where the node appears. Therefore, we decided
to use the context information even for function nodes.

As the subsequent rules state, the above sets not only can be efficiently computed, but
some can also be guaranteed to be non-empty under certain conditions, which hold for GP.
Moreover, in the next section we will see that these sets can be precomputed for all possible
node types, and that functions to extract random elements of these sets can be precomputed
as well. This will lead to a very efficient enforcement of these constraints.

Proposition 7 Assume a node N is the j*h argument of f; and F-specifications are normal.
Then, .

Fn = {fel(fi € F) A (fu & F})}
:: Any value that does not invalidate the domain T'j ts OK. Any function that is not ezplicitly

ezcluded from F.-j is OK. This is so because if f; € Fy, that is if f; cannot be accepted as a
caller to fi, then according to Proposition 3 fi € F!, but it is not.

Proposition 8 Assume a node N is the Root and F-specifications are normal. Then,
TN _ TRoot

Frn = {fel(fe € F) A (fi € FF)}

:: Arguments are analogous to those for Proposition 7, ezcept that the Root provides the
constraints.

Proposition 8 Ty # 0 for any terminal node in any valid program.
:: The valid program does not change when the terminal node ts replaced with itself.

Proposition 10 As long as any function returns a value (as it is in GP), Ty # 0 for any
function node in any valid program. '

:: If the function node is labeled with f;, then it can be replaced with any terminal from T;.
This set is not empty as long as each function returns at least one value.

Proposition 11 For any function node N of any valid program, Fy # 0.
:: If the node s labeled with f;, then f; € Fi.

Note that Fu is not guaranteed to be non-empty for terminal nodes. That is, some
terminals may only be used for computations, but will never be computed.

Example 4 Suppose F = {f}, and fj returns the closest integer to its real-valued ar-
gument. Then, Ty = I, Tﬁ = R!, and Troot = I. Also, (fy € Fﬁ) A (fg € Fp) (in the
T-F-eztensive form), but only (fj € Fd) is sufficient (in the normal form).

For the program (fj 3.27), the terminal node 3.27 has T = I and F = 0.

We can now define closed operators. We assume that all random numbers are taken
from a uniform distribution. For any node N, denote

11-11

® r; to be a random element from 7y
e % to be a random element from Fy (assuming that it is non-empty)
For any terminal node N, denote

e vy to be the current value from that node

Mutation

Assume that node N is chosen for mutation. This selection can be based on a fixed
probability of mutating any allele in all chromosomes (often called post mutation in GP),
or on selecting a random allele in a given selected parent (normal mutation in GP).

Operator 1 (mutation) If a node N is selected for mutation, then replace it with ri with
probability pl,, or with 1§, with 1 — pl.. If r% is used, then recursively repeat ezactly the
same Operator 1 on all arguments of the selected function.

If r% is needed for the node N and the Fy set is empty, try another random node from the
same parent (in normal mutation) or abandon the operation (in post mutation). If r% is
needed for any descendent of N and the Fy set is empty, use r{, instead.

Proposition 12 For any valid parent program, mutation Operator 1 is guaranteed to take
place as long as p!, > 0. For a function node, Operator 1 is guaranteed to take place im-
mediately. Moreover, all T~ and F-specification constraints are guaranteed to be preserved.
: The parent is valid. According to Propositions 9 and 10, the set TV is never empty.
Therefore, as long as this set is allowed in mutation (p}, > 0), mutation will eventually take
place on any node. However, if N is a function node, then according to Propositions 10 and
11 both Ty and Fy are non-empty, so mutation will immediately take place regardless of
PL.. The mutation sets are computed based on normal F-specifications, which are sufficient
according to Theorem 1.

Crossover

Because crossover with two offspring can be accomplished with two crossover operations,
each with one offspring, we will define crossover with one offspring. In unconstrained GP,
there are no specific constraints. Therefore, crossover is reduced to finding two random
crossover points. In constrained "smart” crossover, the choices of plausible crossover points
can be highly reduced. Requiring that two offspring can be generated from the same two
crossover points further reduces chances of finding such points, but can be done if necessary.

Definition 11 Define Sy . to be the set of nodes from parent, which can replace a given
node N selected for crossover.

Proposition 13 For crossover at node N, in parent;, and another parents,

Sna2= {Nz

vN, = Ty, if N3 is a terminal node in parent,
fi € Fn, if N3 is a function node labeled f; in parent,

11-12

:: Crossover may be seen analogous to mutation - from parent; select those crossover nodes
- which are also allowed in mutation for N;. And Ty and Fn are terminals and functions
that the node N, can mutate into. If Ny = Root then Ty, and Fy, are terminals and
functions that the node Root; can mutate into.

Operator 2 (crossover) If parent; and parent, are two crossover parents, select a random
crossover point Ny in parent,, ezcept that internal nodes have collective probability of pl
and leaves have collective probability 1 — p! (following standard GP practice of directing
crossover into internal nodes). Based on whether N, is the Root, apply Proposition 13 to
compute Sy, 2. If the set is not empty, then select a random node Ny (leaves and internal
niodes may be given distinct probabilities with pl), and replace the subtree starting with N,
with that staring with Na. If the set is empty, try another crossover point N; from parent,.

Proposition 14 For any two valid parents, Operator 2 is guaranteed to find valid crossover,
and the operation will satisfy T - and F-specifications.

:: Both parents are valid. Therefore, replacing them wholly will produce a valid offspring.
Moreover, the offspring is created by replacing a subtree with another subtree from a set
computed according to T - and F-specifications. Therefore, any offspring will satisfy these
constraints.

Feasible Initialization Procedure

Operator 3 (initialization) Initialize the population by growing chromosomes starting each
with a random terminal node N such that vn € Troot, and then applying Operator 1 to that
node.

Proposition 15 The above initialization routine Operator 3 will only generate individuals
which are valid with respect T — and F-specification constraints.

:: Operator 1 guarantees a valid offspring from a valid parent (Propositions 7, 8). And the
initial terminal node s valid as the Root.

IMPLEMENTATION

Constraint preprocessing

We do not need terminals T to be explicitly given as in GP - T,, T, and TR will
determine individual sets. The preprocessing needed to ensure that F-specifications are
normal and that our operators can apply can be described as follows:

1. Read TR°%, T, ranges for functions of F and 77 domains for their arguments

2. Read T-specification compatibility constraints of the form T, > T and T, =, TRoot
(not necessary if computed automatically)

3. Read (at least T-intensive F-intensive) F-specifications

11-13

4. Compute normal F-specifications
5. Produce functions for r7 and r* for all necessary sets.

Given this preprocessing mechanism, the defined operators can be used in any GP.

Implementation

Proposition 16 r7 and r* can be precomputed, as part of the preprocessing mechanism,
into functions returning random elements of those sets.

:: For mutation, we directly need r}; and r%. For any mutation, it is determined in one
step which of the two is needed. Based on whether N is the Root or not, Proposition 8 or 7
gives us ezactly the sets from which the random element is selected. There is a fized number
of these sets: there are ezactly 1 + [[4.er (ai) of each T and F sets. All F sets are always
finite with up to |F| elements, and T is either finite, or infinite when domains such as reals
are used. Moreover, these sets never change as GP operates. For the F sets, the elements
can be enumerated and r” can be compiled into a function returning a random function from
each enumerated set. For the T sets which are infinite, r7 can be precompiled to returning
a random entry from the domain. For finite sets, the elements can be enumerated again and
r7 can be compiled into a function returning a random element from each enumerated set.
For sets which are unions of finite or infinite subsets, one may first determine whick class
of subsets to choose from (assuming that we provide some measures comparing cardinalities
of finite and infinite sets, or the user provides such information), and then apply one of the
two above techniques.

For crossover, we need to use the Sy sets. However, at each time we know whether
the node N, is a terminal or a function node, at which moment the problem reduces to the
same as in mutation — selecting random entries from the appropriate T or F set. Moreover,
if P} is used, the elements may be divided into two groups from which to select the random
entry - p. would determine which group to use.

Theorem 2 (Implementation theorem for GP) The defined mutation and crossover opera-
tions not observing size constraints are as efficient as the standard operators in GP, when
implemented with the preprocessing mechanism.

: In GP, mutation generates a random function from F or a random element of T.
Crossover selects a random subtree. It follows directly from Proposition 16 that in our
approach any mutation or crossover can be accomplished by selecting a random entry from
a fized set, even though the sets are more plentiful. However, for any node it is determin-
istic, in a fized time, which set should be used.

Conjecture 1 Provided T-specifications and F-specifications are the mazimal constraints
that can be implemented into a generic constrain processing methodology in GP without
invalidating Theorem 2.

:: Other constraints will require information about a node position in a tree — processing
complezity would be a function of tree depth.

11-14

References

[1] Lawrence Davis (ed.). Handbook of Genetic Algorithms. Van Nostrand Reinhold, 1991.

[2] David E. Goldberg. Genetic Algorithms in Search, Optimization, and Machine Learn-
ing. Addison Wesley, 1989. ‘

[3] Holland, J. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.

[4] Kenneth E. Kinnear, Jr. (ed.) Advances in Genetic Programming. The MIT Press,
1994.

[5] John R. Koza. Genetic Programming. The MIT Press, 1992.
[6] John R. Koza. Genetic Programming II. The MIT Press, 1994.

[7] Zbigniew Michalewicz & Cezary Z. Janikow. "GENOCOP: A Genetic Algorithm for
Numerical Optimization Problems with Linear Constraints”. To appear in Communi-
cations of the ACM.

[8] J.T. Richardson, M.R. Palmer, G. Liepins & M. Hilliard. "Some Guidelines for Ge-
netic Algorithms with Penalty Functions”. In Proceedings of the Third International
Conference on Genetic Algorithms. Morgan Kaufmann, 1989.

11-15

